Let z :=log, b, y:=log,c, z:=log.a. Then zyz =log,blog,clog.a =1, and the
condition a,b,c € (0,1) or a,b,c € (1,00) implies that x, y, z > 0.

The original inequality may be rephrased as:
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Since the harmonic mean is less than or equal to the geometric mean,
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Hence it is enough to prove (2):
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Further simplification of (2) results in
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Equating the left and right sides of (3) shows that the inequality (3) is equivalent to (4)
and (5):
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We now use the p, g, 7 notation:

p=x+y+z,
q:=xy+yz+zx,

= Tyz.

In this notation, (4) and (5) become
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In our case r = 1, which implies (by AM-GM inequality) that p > 3 and ¢ > 3. Now
proving (4) and (5) is straightforward:
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Solution 2 by Angel Plaza, University of Las Palmas de Gran Canaria, Spain

Inb

Note that since log, b = ln_ and a,b,c € (0,1) or a,b,c € (0,1), all the logarithms in the
na

proposed inequality are positive, so the right-hand side is positive.

We will apply the following parametrized Nesbitt’s inequality (see reference 1, theorem
7).

Let z, y, 2, to + ky +lz, ty + kz + lx, tz + ka + ly be positive real numbers and let

—k—l<t<¥.
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>3t+k+1. (1)

We will consider two inequalities, from which the stated problem will follow.
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Notice that the right-hand side of (2) is
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RHS =
mlna+nlnc + mlnb+nlna mlne+nlnb ~ m+n

by the parametrized Nesbitt’s inequality with ¢t =0, k =m and [ = n, and « = Inb,
y =1Inc, and z = Ina. It also should be noticed that in the last expression we may
assume that all the In’s are positive.

Now, the right-hand side of (3) is

RIS — Inalne Inalnb Inblnec 3

mlnalnb+nlnblne mlnblnec+nlnalne mlnalne+nlnalnb ~ m+n

by the parametrized Nesbitt’s inequality with ¢t =0, k=m and [ =n, and x =lnalnc,
y=Inalnb, and z =Inblnc.
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Solution 3 by Soumitra Mandal, Chandar Nagore, India
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Editor’s Comments: Anna V. Tomova of Varna, Bulgaria approached the solution as
follows: She showed that the left hand side of the inequality can be put into the canonical form

1
of X +Y + <7 She then showed that this canonical form has a global minimum at (1,1),
forcing it to have a minimal value of 3, and working with this she produced the final result.

Bruno Salgueiro Fanego of Viveiro, Spain noted that the stated problem is a specific case
of a more general result. Namely: If z,y,z € (0,00) and zyz = 1, then
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He proved the more general result, and applied it to the specific case.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego of Viveiro,
Spain; Ed Gray of Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Shravan
Sridhar, Udupi, India; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
of Varna, Bulgaria, and the proposer.

5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and [, and for any «, 8 € (0, g) the following inequality holds:

k*tana + > tan 8 > — 2

T (E* + 17) cot(a + B).



